منابع مشابه
Currents in Metric Spaces
We develop a theory of currents in metric spaces which extends the classical theory of Federer–Fleming in euclidean spaces and in Riemannian manifolds. The main idea, suggested in [20, 21], is to replace the duality with differential forms with the duality with (k+ 1)-ples (f, π1, . . . , πk) of Lipschitz functions, where k is the dimension of the current. We show, by a metric proof which is ne...
متن کاملInstitute for Mathematical Physics Currents in Metric Spaces Currents in Metric Spaces
We develop a theory of currents in metric spaces which extends the classical theory of Federer{Fleming in euclidean spaces and in Riemannian manifolds. The main idea, suggested in 20, 21], is to replace the duality with diierential forms with the duality with (k + 1)-ples (f; 1; : : : ; k) of Lipschitz functions, where k is the dimension of the current. We show, by a metric proof which is new e...
متن کاملMetric Currents and Geometry of Wasserstein Spaces
We investigate some geometric aspects of Wasserstein spaces through the continuity equation as worked out in mass transportation theory. By defining a suitable homology on the flat torus T, we prove that the space Pp(T) has non-trivial homology in a metric sense. As a byproduct of the developed tools, we show that every parametrization of a Mather’s minimal measure on T corresponds to a mass mi...
متن کاملFlat Convergence for Integral Currents in Metric Spaces
It is well known that in compact local Lipschitz neighborhood retracts in Rn flat convergence for Euclidean integer rectifiable currents amounts just to weak convergence. The purpose of the present paper is to extend this result to integral currents in complete metric spaces admitting a local cone type inequality. This includes for example all Banach spaces and complete CAT(κ)-spaces, κ ∈ R. Th...
متن کاملCompleteness in Probabilistic Metric Spaces
The idea of probabilistic metric space was introduced by Menger and he showed that probabilistic metric spaces are generalizations of metric spaces. Thus, in this paper, we prove some of the important features and theorems and conclusions that are found in metric spaces. At the beginning of this paper, the distance distribution functions are proposed. These functions are essential in defining p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Mathematica
سال: 2000
ISSN: 0001-5962
DOI: 10.1007/bf02392711